Best Packet Sniffers

Packet Sniffing is a colloquial term that refers to the art of network traffic analysis.

There are many powerful tools out there that collect network traffic activity and most of them use pcap (Unix-like systems) or libcap (Windows systems) at their core to do the actual collection.

Packet sniffing software is designed to help analyze these collected packets because even a small amount of data can result in thousands of packets which can be hard to navigate.

We have ranked the following packet analyzers according to the following general considerations: useful features, reliability, ease of installation, integration, of use, amount of help and support offered, how well the software is updated and maintained and how reputable the developers are in the industry.

Here’s our list of the best packet sniffers:

  1. SolarWinds Deep Packet Inspection and Analysis Tool EDITOR’S CHOICE Gives detailed insights into what causes network slowness and uses deep packet inspection to allow you to resolve the root causes. You can identify traffic by application, category and risk level to eliminate and filter problem traffic. With a great user interface, this excellent packet sniffing software is perfect for network analysis. Download a 30-day free trial.
  2. ManageEngine NetFlow Analyzer (FREE TRIAL) A traffic analysis tool that works with NetFlow, J-Flow, sFlow Netstream, IPFIX, and AppFlow. Start a 30-day free trial.
  3. Paessler Packet Capture Tool A packet sniffer, a NetFlow sensor, an sFlow sensor, and a J-Flow sensor built into Paessler PRTG.
  4. Omnipeek Network Protocol Analyzer A network monitor that can be extended to capture packets.
  5. tcpdump The essential free packet capture tool that every network manager needs in his toolkit.
  6. Windump A free clone of tcpdump written for Windows systems.
  7. Wireshark A well-known free packet capture and data analysis tool.
  8. tshark A lightweight answer to those who want the functionality of Wireshark, but the slim profile of tcpdump.
  9. NetworkMiner A Windows-based network analyzer with a no-frills free version.
  10. Fiddler A packet capture tool that focuses on HTTP traffic.
  11. Capsa Written for Windows, the free packet capture tool can be upgraded for payment to add on analytical features.

Advantages of packet sniffing

A packet sniffer is a useful tool to enable you to implement your company’s network capacity policy. The main benefits are that they:

  • Identify congested links
  • Identify applications that generate the most traffic
  • Collect data for predictive analysis
  • Highlight peaks and troughs in network demand

The actions you take depend on your available budget. If you have the resources to expand network capacity, the packet sniffer will enable you to target new resources more effectively. If you have no budget, packet sniffing will help traffic shaping through prioritizing application traffic, resizing subnets, rescheduling heavy-traffic events, limiting bandwidth for specific applications, or replacing applications with more efficient alternatives.

Promiscuous mode

It is important to understand how the network card on your computer operates when you install packet sniffing software. The interface from your computer to the network is called the “network interface controller,” or NIC. Your NIC will only pick up internet traffic that is addressed to its MAC address.

To capture general traffic, you need to put your NIC into “promiscuous mode”. This removes the listening limit on the NIC. In promiscuous mode, your NIC will pick up all network traffic. Most packet sniffers have a utility within the user interface that manages the mode switch for you.

Network traffic types

Network traffic analysis requires an understanding of how networking works. There’s no tool that will magically remove the requirement for an analyst to understand the basics of networking such as the TCP three-way handshake which is used to initiate a connection between two devices. Analysts should also have some understanding of the types of network traffic that exist on a normally functioning network such as ARP and DHCP traffic. This knowledge is essential because analyzing tools will just show you what you ask for – it’s up to you to know what to ask for. If you’re not sure how your network looks normally, it can be hard to ensure you’re digging for the right thing in the mass of packets you’ve collected.

Enterprise tools

Let’s start at the top and work our way down into the nitty-gritty basics. If you’re dealing with an enterprise-level network, you’ll need the big guns. While almost everything uses tcpdump at its core (more on that later), enterprise-level tools can provide other analytical functions such as correlating traffic from many servers, providing intelligent query tools to spot issues, alerting on exception cases, and producing nice graphs that management demands.

Enterprise-level tools tend to focus on network traffic flow rather than judging packet content. By that, I mean that the focus of most sysadmins in an enterprise is to keep the network humming along without performance bottlenecks. When bottlenecks occur, the goal is usually to determine if the problem is the network or an application on the network. On the other side of the coin, these enterprise-level tools are usually able to see so much traffic that they can help predict when a network segment will saturate which is a critical element of capacity management.

Hacker tools

Packet sniffers are also used by hackers. Be aware that these tools can be used to attack your network as well as to solve problems. Packet sniffers can be used as wiretappers to help steal data in transit and they can also contribute to “man in the middle” attacks that alter data in transit and divert traffic in order to defraud a user on the network. Invest in intrusion detection systems to protect your network from these forms of unauthorized access

How do Packet Sniffers and Network Analyzers work?

Packet sniffer diagram

The key feature of a packet sniffer is that it copies data as it travels across a network and makes it available for viewing. The sniffing device simply copies all of the data that it sees passing over a network. When implemented on a switch, settings of the device allow the passing packet to be sent to a second port as well as the intended destination, thus duplicating traffic. Usually, the packets of data that are reaped from the network get copied to a file. Some tools will also show that data in a dashboard. However, packet sniffers can gather a lot of data, which includes encoded admin information. You will need to find an analysis tool that can help you be dereferencing information on the journey of the packets in the extract and other pieces of information, such as the relevance of the port numbers that the packets travel between.

A straightforward packet sniffer will copy over all of the packets traveling on the network. This can be a problem. If t cases, the contents of the packet are not needed for network performance analysis. If you want to track network usage over a 24 hour period or over a few days, then storing every packet will occupy a very large amount of disk space — even if you are only taking in the packet headers. In these scenarios, it is advisable to sample packets, which means copy every 10th or 20th packet rather than copying over every single one.

The best packet sniffers

The tools I’ve listed in this article can be used by experienced network admins who already know what they’re looking for, but aren’t sure which tools are best. They can also be used by more junior sysadmins to gain experience with how modern networks look during day-to-day operations, which will help identify network issues later on.

Our methodology for selecting a packet sniffer

We reviewed the market for packet sniffers and analyzed the options based on the following criteria:

  • The ability to read packet headers and identify source and destination addresses
  • A protocol analyzer that can categorize traffic by app
  • The option to capture all packets or sample every nth packet
  • The ability to communicate with switches and routers through NetFlow and other traffic analysis protocol languages
  • Capacity planning and traffic shaping tools
  • A free trial period or money-back guarantee for no-risk assessment
  • A free tool that is worth installing or a paid tool that is worth the price

Almost all of these tools collect in the same way; it’s the analysis that differentiates them.

1. SolarWinds Deep Packet Inspection and Analysis tool (FREE TRIAL)

SolarWinds NPM QoE DPI Packet Inspection

SolarWinds is a comprehensive suite of IT management tools. The tool that is more relevant to this article is the Deep Packet Inspection and Analysis tool.

Key Features:

  • Categorizes network traffic
  • Protocol stack analyzer
  • Live monitoring
  • Supports traffic shaping
  • 30-day free trial

Collecting network traffic activity is relatively straightforward. Using tools like WireShark, basic level analysis isn’t a show stopper either. But not all situations are that cut and dried. In a bustling network, it may be hard to determine even some fundamental things such as:

  • What application on the local network is creating this traffic?
  • If the application is known (say, a web browser) where are people spending most of their time?
  • Which connections take the longest and are bogging down the network?

Most network devices just use each packet’s metadata to ensure the packet gets where it is going. The contents of the packet are unknown to the network device. Deep Packet Inspection is different; it means that the actual contents of the packet are inspected to learn more about it.

Critical network information that cannot be gleaned from the metadata can be discovered in this way. Tools like those provided by SolarWinds can provide more meaningful data than simply traffic flow.


Other techniques for managing high volume networks include NetFlow and sFlow. Each has its strengths and weaknesses and you can read more about NetFlow and sFlow techniques here.

Network analysis, in general, is an advanced topic that is half experience and half training. It’s possible to train someone to understand every detail about network packets. Still, unless that person also has knowledge of the target network, and some experience to identify anomalies, they won’t get very far.

SolarWinds NPM QoE Node threasholds


  • Offers a combination of DPI and analysis features, making this a great all-in-one option for detailed troubleshooting and security audits
  • Built for the enterprise, the suite offers robust data collection and a variety of options to visualize and search collected data
  • Supports both NetFlow and sFlow collection, giving it more flexibility for higher volume networks
  • Color-coding and other visual clues help administrators find issues quickly prior to an in-depth analysis


  • Very advanced tool, built with network professionals in mind, not ideal for home users or hobbyists


SolarWinds Network Performance Monitor mode gives detailed insights into what causes network slowness and allows you to quickly resolve the root causes using deep packet inspection. By identifying traffic by application, category (business vs. social) and risk level you can eliminate and filter problem traffic and measure application response time. With a great user interface, this excellent packet sniffing software is perfect for network analysis.

Get 30 Day Free Trial:

OS: Microsoft Windows Server 2016 & 2019

2. ManageEngine NetFlow Analyzer (FREE TRIAL)

ManageEngine NetFlow AnalyzerThe ManageEngine NetFlow Analyzer takes traffic information from your network devices. You can choose to sample traffic, capture entire streams, or gather statistics on traffic patterns with this tool.

Key Features:

  • SNMP-based
  • Traffic shaping
  • NetFlow, IPFIX, sFlow, J-Flow, NetStream, AppFlow

The makers of network devices don’t all use the same protocol for communicating traffic data. Thus, the NetFlow Analyzer is capable of using different languages to gather information. These include Cisco NetFlow, Juniper Networks J-Flow, and Huawei Netstream. It is also capable of communicating with the sFlow, IPFIX, and AppFlow standards.

The monitor is able to track the consistency of data flows as well as the load on each network device. Traffic analysis capabilities let you see packets as they pass through a device and capture them to file. This visibility will enable you to see which network applications are chewing up most of your bandwidth and take decisions over traffic shaping measures, such as priority queuing or throttling.

The dashboard of the system features color-coded graphics, which make your task of spotting problems a lot easier. The attractive look and feel of the console ties in with other ManageEngine infrastructure monitoring tools because they were all built on a common platform. This makes it integrate with several ManageEngine products. For example, it is very common for network administrators to buy both the OpManager and the NetFlow Analyzer from Manage Engine.

OpManager monitors devices’ statuses with SNMP procedures, which NetFlow Analyzer focuses on traffic levels and packet flow patterns.

ManageEngine NetFlow Analyzer installs on Windows, Windows Server, and RHEL, CentOS, Fedora, Debian, SUSE, and Ubuntu Linux. The system is offered in two editions.

The Essential edition gives you the standard network traffic monitoring functions plus a reporting and billing module. The higher plan is called the Enterprise Edition. This has all of the features of the Essential Edition plus NBAR & CBQoS monitoring, an advanced security analytics module, capacity planning utilities, and deep packet inspection capabilities. This Edition also includes IP SLA and WLC monitoring.


  • Excellent user interface, easy to navigate, and remains uncluttered even when used on high volume networks
  • Supports multiple networking technologies such as Cisco Netflow, Juniper Networks J-Flow, and Huawei Netstream, making it a hardware-agnostic solution
  • Pre-built templates allow you to pull insights from packet capture right away
  • Installs on Windows as well as on multiple flavors of Linux
  • Built for the enterprise, offers SLA tracking and monitoring features


  • Built for enterprise companies who process a lot of data, not the best fit for small LANs or home users

You can get either edition of the NetFlow Analyzer on a 30-day free trial.

ManageEngine NetFlow Analyzer Start a 30-day FREE Trial

3. Paessler Packet Capture Tool (FREE TRIAL)

Paessler PRTG Maps for Packet Sniffing

The Paessler Packet-Capture-Tool PRTG: All-In-One-Monitoring is a unified infrastructure monitoring tool. It helps you manage your network and your servers. The network monitoring segment of the utility covers two types of tasks. These are a network performance monitor, which examines the statuses of network devices and a network bandwidth analyzer, which covers the flow of traffic over links in the network.

Key Features:

  • Four packet capture sensors
  • Live traffic graphs
  • Performance troubleshooting
  • Traffic alerts

The bandwidth analysis part of PRTG is implemented through the use of four different packet capture tools. These are:

  • A packet sniffer
  • A NetFlow sensor
  • An sFlow sensor
  • A J-Flow sensor

The PRTG packet sniffer only captures the headers of the packets traveling across your network. This gives the packet analyzer a speed advantage and it also reduces the amount of storage space needed to hold capture files. The dashboard of the packet sniffer categorizes traffic by application type. These include email traffic, web packets, chat app traffic data, and file transfer packet volumes.

Paessler Packet Sniffer Sensor

NetFlow is a very widely used data flow messaging system. It was created by Cisco Systems but it is also used for equipment produced by other manufacturers. The PRTG NetFlow sensor also picks up IPFIX messages — this messaging standard is an IETF-sponsored successor to NetFlow. The J-Flow method is a similar messaging system used by Juniper Networks for its equipment. The sFlow standard samples traffic flows, so it will collect every nth packet. NetFlow and J-Flow both capture continuous streams of packets.

Paessler PRTG Switch Port Mirroring

Paessler prices its PRTG software on the number of “sensors” that an implementation activates. A sensor is a system condition or hardware component. For example, each of the four packet sniffers offered by Paessler counts as one PRTG sensor. The system is free to use if you activate 100 sensors or less, so if you only use this package for its packet sniffing interfaces, you won’t have to pay Paessler anything.


  • Designed to be an infrastructure monitoring tool that supports multiple sensors types such as NetFlow, sFlow, and J-Flow
  • Gives users the ability to customize sensors based on the type of application or server they are testing
  • Captures packet headers only, helps speed up analysis and keep storage costs down for long term collection
  • Uses simple yet intuitive graphing for traffic visualization


  • Very detailed platform – takes time to learn and fully utilize all of the features available

The Paessler system includes many other network and server monitoring capabilities including a virtualization monitor and an application monitor. PRTG can be installed on-premises or you can access it as a cloud service. The software runs on Windows environments and you can get it on a 30-day free trial.

Paessler Packet Capture Tool PRTG Download 30-day FREE Trial

4. Omnipeek Network Protocol Analyzer

Omnipeek Network Protocol Analyzer

LiveAction Omnipeek, previously a product of Savvius, is a network protocol analyzer that can be used to capture packets as well as produce protocol analysis of network traffic.

Key Features:

  • Protocol analyzer
  • Packet capture tool
  • Also for wireless networks

Omnipeek can be extended by plug-ins. The core Omnipeek system doesn’t capture network packets. However, the addition of the Capture Engine plug-in gets the packet capture function.  The Capture Engine system picks up packets on a wired network; another extension, called Wifi Adapter adds wireless capabilities and enables Wifi packets to be captured through Omnipeek.

The functions of the base Omnipeek Network Protocol Analyzer extend to network performance monitoring. As well as listing traffic by protocol, the software will measure the transfer speed and regularity of traffic, raising alerts if traffic slows down or trips passed boundary conditions set by the network administrator.

The traffic analyzer can track end-to-end transfer performance across an entire network, or just monitor each link. Other functions monitor interfaces, including incoming traffic arriving at web servers from outside the network. The software is particularly interested in traffic throughput and a display of traffic per protocol. Data can be viewed as lists of protocols and their throughput or as live graphs and charts. Packets captured with the Capture Engine can be stored for analysis or replayed across the network for capacity testing.


  • Lightweight install, additional features can be extended through plug-ins
  • Supports ethernet and wireless packet capture
  • Offers packet replay for testing and capacity planning


  • Interface could be improved, especially around the toolbar section

Omnipeek installs on Windows and Windows Server. The system isn’t free to use. However, it is possible to get Omnipeek on a 30-day free trial.

5. tcpdump

The fundamental tool of almost all network traffic collection is tcpdump. It is an open-source application that comes installed on almost all Unix-like operating systems. Tcpdump is an excellent collection tool and comes complete with a very complex filtering language. It’s essential to know how to filter the data at collection time to end up with a manageable chunk of data to analyze. Capturing all data from a network device on even a moderately busy network can create too much data to analyze efficiently.

Key Features:

  • Command-line tool
  • Packet capture
  • Free to use

In some rare cases, allowing tcpdump to output its capture directly to your screen may be enough to find what you’re looking for. For example, in writing this article, I captured some traffic and noticed that my machine was sending traffic to an IP address I did not recognize. It turns out that my machine was sending data to a Google IP address of Since I did not have any Google products running, nor Gmail open, I did not know why this was happening. I examined my system and found this:

[ ~ ]$ ps -ef | grep google
user      1985  1881  0 10:16 ?        00:00:00 /opt/google/chrome/chrome --type=service

It seems that even when Chrome is not running in the foreground it remains running as a service. I would not have necessarily noticed this without a packet analysis to tip me off. I re-captured some more tcpdump data but this time told tcpdump to write the data to a file that I opened in Wireshark (more on that later). Here’s that entry:

wireshark-google tcpdump

Tcpdump is a favorite tool among sysadmins because it is a command-line tool. This means that it doesn’t require a full-blown desktop to run. It is unusual for production servers to provide a desktop because of the resources that would take, so command-line tools are preferred. As with many advanced tools, tcpdump has a very rich and arcane language that takes some time to master.


  • Open-source tool backed by a large and dedicated community
  • Lightweight application – utilizes CLI for most commands
  • Completely free


  • Isn’t as user friendly as other options
  • Uses a complicated query language for filtering
  • Packet capture can only be read by applications that can read pcap files, not saved in plain text files

A few of the very basic commands involve selecting the network interface from which to collect data, and writing that data to a file so it can be exported for analysis elsewhere. The -i and -w switches are used for this.

# tcpdump -i eth0 -w tcpdump_packets
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
^C51 packets captured

This produces a capture file:

file tcpdump_packets
tcpdump_packets: tcpdump capture file (little-endian) - version 2.4 (Ethernet, capture length 262144)

The standard TCP capture file is a pcap file. It is not text so it can only be read by an analysis program that knows how to read pcap files.

6. WinDump

Most useful open source tools are eventually cloned to other operating systems. When this happens, the application is said to have been ported over. WinDump is a port of tcpdump and behaves in very similar ways.

Key Features:

  • Tcpdump for Windows
  • Works with WinPcap
  • Free to use

One major difference between WinDump and tcpdump is that Windump needs the WinpCap library installed prior to being able to run WinDump. Despite both WinDump and WinpCap being provided by the same maintainer, they are separate downloads.

WinpCap is an actual library that needs to be installed. But, once it is installed, WinDump is an .exe file that needs no installation so it can just run. That may be something to keep in mind if you’re running a Windows network. You don’t necessarily need WinDump installed on every machine since you can just copy it over as needed, but you will want WinpCap installed to support WinDump.

As with tcpdump, WinDump can output network data to the screen for analysis, be filtered in the same way, and also write data to a pcap file for analysis offsite.


  • Open-source tool, very similar to tcpdump in terms of interface and functionality
  • Runs via executable, no lengthy installations necessary
  • Large supportive community


  • Isn’t as user friendly as other options
  • Requires WinpCap library installed on Windows systems
  • Uses a complicated query language for filtering

7. Wireshark

Wireshark is probably the next best-known tool in any sysadmin’s toolkit. It can not only capture data, but also provides some advanced analysis tools. Adding to its appeal, Wireshark is open source, and has been ported over to almost every server operating system that exists. Starting life named Ethereal, Wireshark now runs everywhere, including as a standalone portable app.

Key Features:

  • Essential tool for networks
  • Query language
  • Free to use

If you’re analyzing traffic on a server with a desktop installed, Wireshark can do it all for you. The collected packets can then be analyzed all in one spot. However, desktops are not common on servers, so in many cases, you’ll want to capture the network data packets remotely and then pull the resulting pcap file into Wireshark.

At first launch, Wireshark allows you to either load an existing pcap file, or start capturing. If you elect to capture network traffic, you can optionally specify filters to pare down the amount of data Wireshark collects. Since its analysis tools are so good, it’s less important to ensure you surgically identify the data at collection time with Wireshark. If you don’t specify a filter, Wireshark will simply collect all network data that your selected interface observes.


One of the most useful tools Wireshark provides is the ability to follow a stream. It’s probably most useful to think of a stream as an entire conversation. In the screenshot below we can see a lot of data has been captured, but what I am most interested in is that Google IP address. I can right-click it and Follow the TCP Stream to see the entire conversation.


If you’ve captured traffic elsewhere, you can import the pcap file using Wireshark’s File -> Open dialogue. The same filters and tools that can be used for natively captured network data are available for imported files.



  • One of the most popular sniffer tools, with a massive community behind it
  • Open-source project that adds new features and plugins
  • Supports packet collection and analysis in the same program


  • Has a steep learning curve, designed for network professionals
  • Filtering can take time to learn, collects everything by default which can be overwhelming on large networks

8. TShark

TShark is a handy cross between tcpdump and Wireshark. Tcpdump excels at collecting data packets and can very surgically extract only the data you want, however it is limited in how helpful it can be for analysis. Wireshark does a great job at both collection and analysis, but since it has a heavy user interface, it can’t be used on headless servers. Enter TShark; it captures and analyzes but does the latter on the command line.

Key Features:

  • Command line
  • Based on Wireshark
  • Free to use

TShark uses the same filtering conventions as Wireshark which should be no surprise since they’re essentially the same product. This command tells TShark only to bother capturing the destination IP address as well as some other interesting fields from the HTTP part of the packet.

# tshark -i eth0 -Y http.request -T fields -e ip.dst -e http.user_agent -e http.request.uri    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /images/title.png    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /images/styles/phoenix.css    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /images/code/jquery_lightbox/jquery_lightbox/js/jquery-1.2.6.pack.js    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /images/styles/index.css    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /images/images/title.png    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /favicon.ico    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /favicon.ico

If you want to capture to a file you can use the -w switch to write it, and then use TShark’s -r (read mode) switch to read it.

Capture first:

# tshark -i eth0 -w tshark_packets
Capturing on 'eth0'
102 ^C

Read it, either on the same server, or transfer it to some other analysis server.

# tshark -r tshark_packets -Y http.request -T fields -e ip.dst -e http.user_agent -e http.request.uri    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /contact    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /reservations/    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /reservations/styles/styles.css    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /res/code/jquery_lightbox/jquery_lightbox/js/jquery-1.2.6.pack.js    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /res/styles/index.css    Mozilla/5.0 (X11; Linux x86_64; rv:57.0) Gecko/20100101 Firefox/57.0    /res/images/title.png


  • Allows for more precise data collection, allowing easier filtering options than similar tools
  • Operates similarly to Wireshark, making it easier to use for those who have used Wireshark
  • More CLI focused, making it a popular choice for those who prefer fewer interfaces


  • Limited analysis tools builtin
  • Not user/beginner-friendly

9. NetworkMiner

NetworkMiner is a fascinating tool that falls more into the category of a forensic tool rather than a straight-up network sniffer. The field of forensics typically deals with the investigation and collection of evidence and Network Miner does that job well for network traffic. Much like WireShark can follow a TCP stream to recover an entire TCP conversation, Network Miner can follow a stream to reconstruct files that were sent over the network.


To capture live traffic, Network Miner should be strategically placed on the network to be able to observe and collect the traffic you’re interested in. It won’t introduce any of its own traffic onto the network, so it operates very stealthily.

Key Features:

  • Analysis tool
  • Easy-to-use interface
  • Free version

Network Miner can also operate in offline mode. You can use the tried and true tcpdump tool to capture packets at a point of interest on your network, and then import the pcap files into Network Miner. It will then attempt to reconstruct any files or certificates it finds in the capture file.

Network Miner is built for Windows, but by using Mono, it can be run on any OS that has a Mono framework such as Linux and macOS.

There’s a free version to get you started that has a decent array of features. If you want more advanced capabilities such as GeoIP location and custom scripting, you’ll need to purchase a professional license.


  • Acts as a forensic tool as well as a packet sniffer
  • Can reconstruct files and packets over TCP streams
  • Does not introduce any noise to the network while in use, good for avoiding cross-contamination
  • Free to use, includes a paid version for more advanced features
  • Offers a GUI rather than only CLI


  • Interface is antiquated and can be difficult to navigate at times

10. Fiddler (HTTP)

Fiddler is not technically a network packet capture tool, but it is so incredibly useful that it made the list. Unlike the other tools listed here which are designed to capture ad-hoc traffic on the network from any source, Fiddler is more of a desktop debugging tool. It captures HTTP traffic and while many browsers already have this capability in their developer tools, Fiddler is not limited to browser traffic. Fiddler can capture any HTTP traffic on the desktop including that of non-web applications.


Many desktop network applications use HTTP to connect to web services and without a tool like Fiddler, the only way to capture that traffic for analysis is using tools like tcpdump or WireShark. However, those tools operate at the packet level so analysis includes reconstruction of those packets into HTTP streams. That can be a lot of work to perform some simple HTTP investigation and Fiddler comes to the rescue. Fiddler can help discover cookies, certificates, and packet payload data coming in or out of those apps.

Key Features:

  • Displays HTTP traffic
  • Debugging assistance
  • Free to use

It helps that Fiddler is free and, much like NetworkMiner, it can be run within Mono on any other operating system with a Mono framework.


  • Focused on capturing only HTTP traffic, allowing for a more focused and less complex solution
  • Ideal for those looking into the security and communications of the HTTP protocol
  • Can discover all HTTP traffic, not just limited to browsers
  • Is completely free
  • Offers a GUI for those who want more than a CLI tool


  • Steep learning curve
  • Can be tough to find support on certain issues

11. Capsa

Capsa Network Analyzer has several editions, each with varying capabilities. At the first level, Capsa free, the software essentially just captures packets and allows some very graphical analysis of them. The dashboard is very unique and can help novice sysadmins pinpoint network issues quickly even with little actual packet knowledge. The free level is aimed at people who want to know more about packets and build up their skills into full-fledged analysts.


The free version knows how to monitor over 300 protocols, it allows for email monitoring and also it can save email content and also supports triggers. The triggers can be used to set alerts for specific situations which means Capsa standard can also be used in a support capacity to some extent.

Key Features:

  • Analyzes 300 protocols
  • Interprets data into graphs
  • Free version

Capsa is only available for Windows 2008/Vista/7/8 and 10.


  • Features built-in traffic analysis tools and graphs for live visualization
  • More intuitive interface than similar tools
  • Better option for junior sysadmins, easier to learn the platform
  • Free version supports over 300 different protocols, making it a robust free option


  • Not as lightweight as other CLI tools
  • Professionals may find the interface bulky and not as efficient

Choosing a packet sniffer

With the packet sniffing tools I have mentioned, it is not a big leap to see how a systems administrator could build an on-demand network monitoring infrastructure.

If the network is so large that this isn’t feasible, then enterprise-level tools like the SolarWinds suite and its 30-day free trial can help tame all that network data into a manageable data set.

Tcpdump, or Windump, could be installed on all servers. A scheduler, such as cron or Windows scheduler, could kick off a packet collection session at some time of interest and write those collections to a pcap file.

At some later time, a sysadmin can transfer those packets to a central machine and use Wireshark to analyze them.

Packet Sniffers FAQs

What do PCAP tools do?

PCAP is an abbreviation of “packet capture.” A PCAP tool copies packets as they travel around the network. The captured packets are displayed in a viewer within the tool, stored to a file, or both. Some PCAP tools will copy all of each packet, including its data payload, while others only display and/or store packet headers. PCAP tools that capture packets in their entirety create very large files and are stored with the .pcap extension.

What are the best network traffic analysis tools?

Our research shows that the best network traffic analysis tools are SolarWinds Deep Packet Inspection and Analysis Tool, Paessler Packet Capture Tool, ManageEngine NetFlow Analyzer, and the Omnipeek Network Protocol Analyzer. There are also some industry favorites such as tcpdump, Windump, and Wireshark.

How does a packet analyzer work?

A packet analyzer captures packets as they travel around the network. This can be implemented as a stand-alone packet capture device that works as a TAP or software that accesses the network adapter of its host computer in “promiscuous mode.” As well as copying network packets, a packet analyzer needs to offer a utility to view, search, and filter packet data. Some packet analyzers also include more sophisticated analysis tools.

Can packet sniffing be detected?

Packet sniffing can be detected in certain circumstances. The solution to finding packet capture depends on the location of the packet sniffer and the method it uses. A software packet sniffing tool requires that the host computer’s network adapter is in promiscuous mode. Issuing a Ping with the right IP address but the wrong MAC address for each computer on the network should spot the hosts that are in promiscuous mode and therefore likely to be in use for packet sniffing.

What is full packet capture?

Full packet capture copies all of a packet including the data payload. Typically full packet capture data gets stored in a file with the .pcap extension. Businesses don’t like network professionals using this method because the contents of the packet might not be encrypted. Allowing IT department staff to use full packet capture capabilities can break the confidentiality of data held by the enterprise and invalidate data security standards compliance.